Non Sibi High School

Andover's Chem 250: Introductory/Basic Chemistry

Chapter 13, Review Quiz 1

1

If 125 kilograms of methanol, CH_3OH , is burned according to the combustion equation below, how much heat will be released?

 $2 C H_3 O H(l) + 3 O_2(g) \longrightarrow 2 C O_2(g) + 4 H_2 O(l) \Delta H = -1453 \, kJ/mol$

$\mathbf{2}$

If 3.55 kJ of heat are absorbed during the decomposition reaction below, how many milliliters of sulfur trioxide gas, measured at 22° C and 712 mmHg, will decompose?

$$2SO_3(g) \longrightarrow 2SO_2(g) + O_2(g) \Delta H = 198 \, kJ/mol$$

3

For the reaction $2C_3H_7OH(g) + 9O_2(g) \longrightarrow 6CO_2(g) + 8H_2O(g)$, estimate ΔH using average bond energies.

$\mathbf{4}$

Calculate ΔH for the reaction $C(s) + 2H_2(g) + \frac{1}{2}O_2(g) \longrightarrow CH_3OH(g)$ using the following three reactions:

I)
$$CO_2(g) \longrightarrow C(s) + O_2(g) \Delta H_I = 394 \, kJ/mol$$

II)
$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g) \Delta H_{II} = -242 \text{ kJ/mol}$$

III)
$$2CH_3OH(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 4H_2O(g) \Delta H_{III} = -1354 \text{ kJ/mol}$$

Write the balanced formation reaction, including physical states, for solid sodium iodate, $NaIO_3$.

6

Calculate ΔH° for the reaction $2NO(g)+O_2(g)\longrightarrow 2NO_2(g)$ using the following information:

Compound	$\Delta H_{f}^{\circ} \left(kJ/mol \right)$
NO(g)	90.
$NO_2(g)$	33

$\mathbf{7}$

The specific heat of magnesium metal is $1.05 \text{ J/g} \cdot ^{\circ}\text{C}$. How much heat in kilojoules is lost when a 225 gram sample of magnesium metal is cooled from $625 ^{\circ}\text{C}$ to $125 ^{\circ}\text{C}$?

8

In an insulated calorimeter, a 475 gram piece of tin metal originally at 132°C was added to 135 grams of water originally at 19°C. The final temperature of the tin-water mixture was 36°C. Determine the specific heat of tin.

9

The specific heat of tungsten metal is $0.13 \text{ J/g} \cdot ^{\circ}\text{C}$. In an insulated calorimeter, a 955 gram piece of tungsten metal originally at 375°C was added to 725 grams of water originally at 18°C . Determine the final temperature of the tungsten-water mixture.

10

In an insulated calorimeter, 18.2 grams of solid cesium hydroxide at 22.3°C was dissolved in 135.7 grams of water also at 22.3°C, after which the final temperature of the mixed solution was 36.9°C. If the specific heat of the mixed solution was 3.87 J/g.°C, determine Δ H for the dissolving process CsOH(s) \rightarrow CsOH(aq) in kJ/mol CsOH.

$\mathbf{5}$

11

In an insulated calorimeter, 55.7 mL of 1.91 M acetic acid was mixed with 62.6 mL of 1.83 M sodium hydroxide, with both solutions originally at 18.2°C. The final temperature of the mixed solutions was 30.1°C. The density of the mixed solutions was 1.03 g/mL and the specific heat of the mixed solutions was 3.96 J/g·°C. Write a balanced molecular equation, including physical states, and determine Δ H for the neutralization reaction in kJ/mol of water formed.

12

Consider the following data for methanol, CH₃OH:

 $\begin{array}{l} {\rm melting\ point\ =\ -98^\circ C}\\ {\rm boiling\ point\ =\ 65^\circ C}\\ \Delta {\rm H}_{\rm fusion\ =\ 3.2\ kJ/mol}\\ \Delta {\rm H}_{\rm vaporization\ =\ 38\ kJ/mol}\\ {\rm specific\ heat\ of\ liquid\ methanol\ =\ 2.5\ J/g^{\circ}C}\\ {\rm specific\ heat\ of\ methanol\ vapor\ =\ 1.7\ J/g^{\circ}C} \end{array}$

Sketch a heating curve that depicts solid methanol at -98° C being heated to 88° C and then calculate the total amount of heat in kilojoules absorbed when 77 grams of methanol undergoes this process.

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License</u> <u>Contact: kcardozo@andover.edu</u>